\(\int \frac {1}{x^5 (3+4 x^3+x^6)} \, dx\) [168]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [A] (verification not implemented)
   Sympy [C] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 16, antiderivative size = 126 \[ \int \frac {1}{x^5 \left (3+4 x^3+x^6\right )} \, dx=-\frac {1}{12 x^4}+\frac {4}{9 x}-\frac {\arctan \left (\frac {1-2 x}{\sqrt {3}}\right )}{2 \sqrt {3}}+\frac {\arctan \left (\frac {\sqrt [3]{3}-2 x}{3^{5/6}}\right )}{18\ 3^{5/6}}-\frac {1}{6} \log (1+x)+\frac {\log \left (\sqrt [3]{3}+x\right )}{54 \sqrt [3]{3}}+\frac {1}{12} \log \left (1-x+x^2\right )-\frac {\log \left (3^{2/3}-\sqrt [3]{3} x+x^2\right )}{108 \sqrt [3]{3}} \]

[Out]

-1/12/x^4+4/9/x+1/54*3^(1/6)*arctan(1/3*(3^(1/3)-2*x)*3^(1/6))-1/6*ln(1+x)+1/162*3^(2/3)*ln(3^(1/3)+x)+1/12*ln
(x^2-x+1)-1/324*3^(2/3)*ln(3^(2/3)-3^(1/3)*x+x^2)-1/6*arctan(1/3*(1-2*x)*3^(1/2))*3^(1/2)

Rubi [A] (verified)

Time = 0.07 (sec) , antiderivative size = 126, normalized size of antiderivative = 1.00, number of steps used = 15, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.625, Rules used = {1382, 1518, 1524, 298, 31, 648, 632, 210, 642, 631} \[ \int \frac {1}{x^5 \left (3+4 x^3+x^6\right )} \, dx=-\frac {\arctan \left (\frac {1-2 x}{\sqrt {3}}\right )}{2 \sqrt {3}}+\frac {\arctan \left (\frac {\sqrt [3]{3}-2 x}{3^{5/6}}\right )}{18\ 3^{5/6}}-\frac {1}{12 x^4}+\frac {1}{12} \log \left (x^2-x+1\right )-\frac {\log \left (x^2-\sqrt [3]{3} x+3^{2/3}\right )}{108 \sqrt [3]{3}}+\frac {4}{9 x}-\frac {1}{6} \log (x+1)+\frac {\log \left (x+\sqrt [3]{3}\right )}{54 \sqrt [3]{3}} \]

[In]

Int[1/(x^5*(3 + 4*x^3 + x^6)),x]

[Out]

-1/12*1/x^4 + 4/(9*x) - ArcTan[(1 - 2*x)/Sqrt[3]]/(2*Sqrt[3]) + ArcTan[(3^(1/3) - 2*x)/3^(5/6)]/(18*3^(5/6)) -
 Log[1 + x]/6 + Log[3^(1/3) + x]/(54*3^(1/3)) + Log[1 - x + x^2]/12 - Log[3^(2/3) - 3^(1/3)*x + x^2]/(108*3^(1
/3))

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 298

Int[(x_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> Dist[-(3*Rt[a, 3]*Rt[b, 3])^(-1), Int[1/(Rt[a, 3] + Rt[b, 3]*x),
x], x] + Dist[1/(3*Rt[a, 3]*Rt[b, 3]), Int[(Rt[a, 3] + Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3
]^2*x^2), x], x] /; FreeQ[{a, b}, x]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 648

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 1382

Int[((d_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(d*x)^(m + 1)*((a +
 b*x^n + c*x^(2*n))^(p + 1)/(a*d*(m + 1))), x] - Dist[1/(a*d^n*(m + 1)), Int[(d*x)^(m + n)*(b*(m + n*(p + 1) +
 1) + c*(m + 2*n*(p + 1) + 1)*x^n)*(a + b*x^n + c*x^(2*n))^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && EqQ[n2, 2
*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && LtQ[m, -1] && IntegerQ[p]

Rule 1518

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))*((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :>
 Simp[d*(f*x)^(m + 1)*((a + b*x^n + c*x^(2*n))^(p + 1)/(a*f*(m + 1))), x] + Dist[1/(a*f^n*(m + 1)), Int[(f*x)^
(m + n)*(a + b*x^n + c*x^(2*n))^p*Simp[a*e*(m + 1) - b*d*(m + n*(p + 1) + 1) - c*d*(m + 2*n*(p + 1) + 1)*x^n,
x], x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && LtQ[m, -
1] && IntegerQ[p]

Rule 1524

Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_)))/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x_Symbol] :> Wi
th[{q = Rt[b^2 - 4*a*c, 2]}, Dist[e/2 + (2*c*d - b*e)/(2*q), Int[(f*x)^m/(b/2 - q/2 + c*x^n), x], x] + Dist[e/
2 - (2*c*d - b*e)/(2*q), Int[(f*x)^m/(b/2 + q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[n2
, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {1}{12 x^4}+\frac {1}{12} \int \frac {-16-4 x^3}{x^2 \left (3+4 x^3+x^6\right )} \, dx \\ & = -\frac {1}{12 x^4}+\frac {4}{9 x}-\frac {1}{36} \int \frac {x \left (-52-16 x^3\right )}{3+4 x^3+x^6} \, dx \\ & = -\frac {1}{12 x^4}+\frac {4}{9 x}-\frac {1}{18} \int \frac {x}{3+x^3} \, dx+\frac {1}{2} \int \frac {x}{1+x^3} \, dx \\ & = -\frac {1}{12 x^4}+\frac {4}{9 x}-\frac {1}{6} \int \frac {1}{1+x} \, dx+\frac {1}{6} \int \frac {1+x}{1-x+x^2} \, dx+\frac {\int \frac {1}{\sqrt [3]{3}+x} \, dx}{54 \sqrt [3]{3}}-\frac {\int \frac {\sqrt [3]{3}+x}{3^{2/3}-\sqrt [3]{3} x+x^2} \, dx}{54 \sqrt [3]{3}} \\ & = -\frac {1}{12 x^4}+\frac {4}{9 x}-\frac {1}{6} \log (1+x)+\frac {\log \left (\sqrt [3]{3}+x\right )}{54 \sqrt [3]{3}}-\frac {1}{36} \int \frac {1}{3^{2/3}-\sqrt [3]{3} x+x^2} \, dx+\frac {1}{12} \int \frac {-1+2 x}{1-x+x^2} \, dx+\frac {1}{4} \int \frac {1}{1-x+x^2} \, dx-\frac {\int \frac {-\sqrt [3]{3}+2 x}{3^{2/3}-\sqrt [3]{3} x+x^2} \, dx}{108 \sqrt [3]{3}} \\ & = -\frac {1}{12 x^4}+\frac {4}{9 x}-\frac {1}{6} \log (1+x)+\frac {\log \left (\sqrt [3]{3}+x\right )}{54 \sqrt [3]{3}}+\frac {1}{12} \log \left (1-x+x^2\right )-\frac {\log \left (3^{2/3}-\sqrt [3]{3} x+x^2\right )}{108 \sqrt [3]{3}}-\frac {1}{2} \text {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,-1+2 x\right )-\frac {\text {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1-\frac {2 x}{\sqrt [3]{3}}\right )}{18 \sqrt [3]{3}} \\ & = -\frac {1}{12 x^4}+\frac {4}{9 x}-\frac {\tan ^{-1}\left (\frac {1-2 x}{\sqrt {3}}\right )}{2 \sqrt {3}}+\frac {\tan ^{-1}\left (\frac {\sqrt [3]{3}-2 x}{3^{5/6}}\right )}{18\ 3^{5/6}}-\frac {1}{6} \log (1+x)+\frac {\log \left (\sqrt [3]{3}+x\right )}{54 \sqrt [3]{3}}+\frac {1}{12} \log \left (1-x+x^2\right )-\frac {\log \left (3^{2/3}-\sqrt [3]{3} x+x^2\right )}{108 \sqrt [3]{3}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.03 (sec) , antiderivative size = 118, normalized size of antiderivative = 0.94 \[ \int \frac {1}{x^5 \left (3+4 x^3+x^6\right )} \, dx=\frac {1}{324} \left (-\frac {27}{x^4}+\frac {144}{x}+6 \sqrt [6]{3} \arctan \left (\frac {\sqrt [3]{3}-2 x}{3^{5/6}}\right )+54 \sqrt {3} \arctan \left (\frac {-1+2 x}{\sqrt {3}}\right )-54 \log (1+x)+2\ 3^{2/3} \log \left (3+3^{2/3} x\right )+27 \log \left (1-x+x^2\right )-3^{2/3} \log \left (3-3^{2/3} x+\sqrt [3]{3} x^2\right )\right ) \]

[In]

Integrate[1/(x^5*(3 + 4*x^3 + x^6)),x]

[Out]

(-27/x^4 + 144/x + 6*3^(1/6)*ArcTan[(3^(1/3) - 2*x)/3^(5/6)] + 54*Sqrt[3]*ArcTan[(-1 + 2*x)/Sqrt[3]] - 54*Log[
1 + x] + 2*3^(2/3)*Log[3 + 3^(2/3)*x] + 27*Log[1 - x + x^2] - 3^(2/3)*Log[3 - 3^(2/3)*x + 3^(1/3)*x^2])/324

Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.07 (sec) , antiderivative size = 67, normalized size of antiderivative = 0.53

method result size
risch \(\frac {\frac {4 x^{3}}{9}-\frac {1}{12}}{x^{4}}-\frac {\ln \left (x +1\right )}{6}+\frac {\ln \left (x^{2}-x +1\right )}{12}+\frac {\sqrt {3}\, \arctan \left (\frac {2 \left (x -\frac {1}{2}\right ) \sqrt {3}}{3}\right )}{6}+\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (3 \textit {\_Z}^{3}-1\right )}{\sum }\textit {\_R} \ln \left (3 \textit {\_R}^{2}+x \right )\right )}{54}\) \(67\)
default \(-\frac {1}{12 x^{4}}+\frac {4}{9 x}-\frac {\ln \left (x +1\right )}{6}+\frac {3^{\frac {2}{3}} \ln \left (3^{\frac {1}{3}}+x \right )}{162}-\frac {3^{\frac {2}{3}} \ln \left (3^{\frac {2}{3}}-3^{\frac {1}{3}} x +x^{2}\right )}{324}-\frac {3^{\frac {1}{6}} \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 \,3^{\frac {2}{3}} x}{3}-1\right )}{3}\right )}{54}+\frac {\ln \left (x^{2}-x +1\right )}{12}+\frac {\sqrt {3}\, \arctan \left (\frac {\left (2 x -1\right ) \sqrt {3}}{3}\right )}{6}\) \(94\)

[In]

int(1/x^5/(x^6+4*x^3+3),x,method=_RETURNVERBOSE)

[Out]

(4/9*x^3-1/12)/x^4-1/6*ln(x+1)+1/12*ln(x^2-x+1)+1/6*3^(1/2)*arctan(2/3*(x-1/2)*3^(1/2))+1/54*sum(_R*ln(3*_R^2+
x),_R=RootOf(3*_Z^3-1))

Fricas [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 112, normalized size of antiderivative = 0.89 \[ \int \frac {1}{x^5 \left (3+4 x^3+x^6\right )} \, dx=-\frac {3^{\frac {2}{3}} x^{4} \log \left (x^{2} - 3^{\frac {1}{3}} x + 3^{\frac {2}{3}}\right ) - 2 \cdot 3^{\frac {2}{3}} x^{4} \log \left (x + 3^{\frac {1}{3}}\right ) - 54 \, \sqrt {3} x^{4} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x - 1\right )}\right ) - 6 \cdot 3^{\frac {1}{6}} x^{4} \arctan \left (-\frac {1}{3} \cdot 3^{\frac {1}{6}} {\left (2 \, x - 3^{\frac {1}{3}}\right )}\right ) - 27 \, x^{4} \log \left (x^{2} - x + 1\right ) + 54 \, x^{4} \log \left (x + 1\right ) - 144 \, x^{3} + 27}{324 \, x^{4}} \]

[In]

integrate(1/x^5/(x^6+4*x^3+3),x, algorithm="fricas")

[Out]

-1/324*(3^(2/3)*x^4*log(x^2 - 3^(1/3)*x + 3^(2/3)) - 2*3^(2/3)*x^4*log(x + 3^(1/3)) - 54*sqrt(3)*x^4*arctan(1/
3*sqrt(3)*(2*x - 1)) - 6*3^(1/6)*x^4*arctan(-1/3*3^(1/6)*(2*x - 3^(1/3))) - 27*x^4*log(x^2 - x + 1) + 54*x^4*l
og(x + 1) - 144*x^3 + 27)/x^4

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 1.20 (sec) , antiderivative size = 141, normalized size of antiderivative = 1.12 \[ \int \frac {1}{x^5 \left (3+4 x^3+x^6\right )} \, dx=- \frac {\log {\left (x + 1 \right )}}{6} + \left (\frac {1}{12} - \frac {\sqrt {3} i}{12}\right ) \log {\left (x + \frac {4782978 \left (\frac {1}{12} - \frac {\sqrt {3} i}{12}\right )^{2}}{547} + \frac {1028869776 \left (\frac {1}{12} - \frac {\sqrt {3} i}{12}\right )^{5}}{547} \right )} + \left (\frac {1}{12} + \frac {\sqrt {3} i}{12}\right ) \log {\left (x + \frac {1028869776 \left (\frac {1}{12} + \frac {\sqrt {3} i}{12}\right )^{5}}{547} + \frac {4782978 \left (\frac {1}{12} + \frac {\sqrt {3} i}{12}\right )^{2}}{547} \right )} + \operatorname {RootSum} {\left (472392 t^{3} - 1, \left ( t \mapsto t \log {\left (\frac {1028869776 t^{5}}{547} + \frac {4782978 t^{2}}{547} + x \right )} \right )\right )} + \frac {16 x^{3} - 3}{36 x^{4}} \]

[In]

integrate(1/x**5/(x**6+4*x**3+3),x)

[Out]

-log(x + 1)/6 + (1/12 - sqrt(3)*I/12)*log(x + 4782978*(1/12 - sqrt(3)*I/12)**2/547 + 1028869776*(1/12 - sqrt(3
)*I/12)**5/547) + (1/12 + sqrt(3)*I/12)*log(x + 1028869776*(1/12 + sqrt(3)*I/12)**5/547 + 4782978*(1/12 + sqrt
(3)*I/12)**2/547) + RootSum(472392*_t**3 - 1, Lambda(_t, _t*log(1028869776*_t**5/547 + 4782978*_t**2/547 + x))
) + (16*x**3 - 3)/(36*x**4)

Maxima [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 96, normalized size of antiderivative = 0.76 \[ \int \frac {1}{x^5 \left (3+4 x^3+x^6\right )} \, dx=-\frac {1}{324} \cdot 3^{\frac {2}{3}} \log \left (x^{2} - 3^{\frac {1}{3}} x + 3^{\frac {2}{3}}\right ) + \frac {1}{162} \cdot 3^{\frac {2}{3}} \log \left (x + 3^{\frac {1}{3}}\right ) + \frac {1}{6} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x - 1\right )}\right ) - \frac {1}{54} \cdot 3^{\frac {1}{6}} \arctan \left (\frac {1}{3} \cdot 3^{\frac {1}{6}} {\left (2 \, x - 3^{\frac {1}{3}}\right )}\right ) + \frac {16 \, x^{3} - 3}{36 \, x^{4}} + \frac {1}{12} \, \log \left (x^{2} - x + 1\right ) - \frac {1}{6} \, \log \left (x + 1\right ) \]

[In]

integrate(1/x^5/(x^6+4*x^3+3),x, algorithm="maxima")

[Out]

-1/324*3^(2/3)*log(x^2 - 3^(1/3)*x + 3^(2/3)) + 1/162*3^(2/3)*log(x + 3^(1/3)) + 1/6*sqrt(3)*arctan(1/3*sqrt(3
)*(2*x - 1)) - 1/54*3^(1/6)*arctan(1/3*3^(1/6)*(2*x - 3^(1/3))) + 1/36*(16*x^3 - 3)/x^4 + 1/12*log(x^2 - x + 1
) - 1/6*log(x + 1)

Giac [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 98, normalized size of antiderivative = 0.78 \[ \int \frac {1}{x^5 \left (3+4 x^3+x^6\right )} \, dx=-\frac {1}{324} \cdot 3^{\frac {2}{3}} \log \left (x^{2} - 3^{\frac {1}{3}} x + 3^{\frac {2}{3}}\right ) + \frac {1}{162} \cdot 3^{\frac {2}{3}} \log \left ({\left | x + 3^{\frac {1}{3}} \right |}\right ) + \frac {1}{6} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x - 1\right )}\right ) - \frac {1}{54} \cdot 3^{\frac {1}{6}} \arctan \left (\frac {1}{3} \cdot 3^{\frac {1}{6}} {\left (2 \, x - 3^{\frac {1}{3}}\right )}\right ) + \frac {16 \, x^{3} - 3}{36 \, x^{4}} + \frac {1}{12} \, \log \left (x^{2} - x + 1\right ) - \frac {1}{6} \, \log \left ({\left | x + 1 \right |}\right ) \]

[In]

integrate(1/x^5/(x^6+4*x^3+3),x, algorithm="giac")

[Out]

-1/324*3^(2/3)*log(x^2 - 3^(1/3)*x + 3^(2/3)) + 1/162*3^(2/3)*log(abs(x + 3^(1/3))) + 1/6*sqrt(3)*arctan(1/3*s
qrt(3)*(2*x - 1)) - 1/54*3^(1/6)*arctan(1/3*3^(1/6)*(2*x - 3^(1/3))) + 1/36*(16*x^3 - 3)/x^4 + 1/12*log(x^2 -
x + 1) - 1/6*log(abs(x + 1))

Mupad [B] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 124, normalized size of antiderivative = 0.98 \[ \int \frac {1}{x^5 \left (3+4 x^3+x^6\right )} \, dx=\frac {3^{2/3}\,\ln \left (x+3^{1/3}\right )}{162}-\frac {\ln \left (x+1\right )}{6}-\ln \left (x-\frac {1}{2}-\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (-\frac {1}{12}+\frac {\sqrt {3}\,1{}\mathrm {i}}{12}\right )+\ln \left (x-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{12}+\frac {\sqrt {3}\,1{}\mathrm {i}}{12}\right )+\frac {\frac {4\,x^3}{9}-\frac {1}{12}}{x^4}-\ln \left (x-\frac {3^{1/3}}{2}-\frac {3^{5/6}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {3^{2/3}}{324}-\frac {3^{1/6}\,1{}\mathrm {i}}{108}\right )-\ln \left (x-\frac {3^{1/3}}{2}+\frac {3^{5/6}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {3^{2/3}}{324}+\frac {3^{1/6}\,1{}\mathrm {i}}{108}\right ) \]

[In]

int(1/(x^5*(4*x^3 + x^6 + 3)),x)

[Out]

(3^(2/3)*log(x + 3^(1/3)))/162 - log(x + 1)/6 - log(x - (3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/12 - 1/12) + log(x
 + (3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/12 + 1/12) + ((4*x^3)/9 - 1/12)/x^4 - log(x - 3^(1/3)/2 - (3^(5/6)*1i)/
2)*(3^(2/3)/324 - (3^(1/6)*1i)/108) - log(x - 3^(1/3)/2 + (3^(5/6)*1i)/2)*(3^(2/3)/324 + (3^(1/6)*1i)/108)